翻訳と辞書
Words near each other
・ Debri people
・ Debridement
・ Debridement (dental)
・ Debrie
・ Debriefing
・ Debrigarh Wildlife Sanctuary
・ Debrii
・ Debris
・ Debris (album)
・ Debris (disambiguation)
・ Debris (play)
・ Debris (Sandwich album)
・ Debris cone
・ Debris Dam Formation
・ Debris disk
Debris flow
・ Debris Inc.
・ Debris linux
・ Debris mortar
・ Debrisol
・ Debrisoquine
・ Debro
・ Debromomarinone
・ Debrosania
・ DeBrosse
・ Debruce, New York
・ Debruhl-Marshall House
・ Debrum House
・ Debrznica
・ Debrzno


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Debris flow : ウィキペディア英語版
Debris flow

Debris flows are geological phenomena in which water-laden masses of soil and fragmented rock rush down mountainsides, funnel into stream channels, entrain objects in their paths, and form thick, muddy deposits on valley floors. They generally have bulk densities comparable to those of rock avalanches and other types of landslides (roughly 2000 kilograms per cubic meter), but owing to widespread sediment liquefaction caused by high pore-fluid pressures, they can flow almost as fluidly as water.〔(Iverson, R.M., 1997, The physics of debris flows, Reviews of Geophysics, 35(3): 245-296. )〕 Debris flows descending steep channels commonly attain speeds that surpass 10 meters per second (more than 20 miles per hour), although some large flows can reach speeds that are much greater. Debris flows with volumes ranging up to about 100,000 cubic meters occur frequently in mountainous regions worldwide. The largest prehistoric flows have had volumes exceeding 1 billion cubic meters (i.e., 1 cubic kilometer). As a result of their high sediment concentrations and mobility, debris flows can be very destructive.
Notable debris-flow disasters of the twentieth century involved more than 20,000 fatalities in Armero, Colombia in 1985 and tens of thousands in Vargas State, Venezuela in 1999.
==Features and behavior==
Debris flows have volumetric sediment concentrations exceeding about 40 to 50%, and the remainder of a flow's volume consists of water. By definition, “debris” includes sediment grains with diverse shapes and sizes, commonly ranging from microscopic clay particles to great boulders. Media reports often use the term mudflow to describe debris flows, but true mudflows are composed mostly of grains smaller than sand. On Earth's land surface, mudflows are far less common than debris flows. However, underwater mudflows are prevalent on submarine continental margins, where they may spawn turbidity currents. Debris flows in forested regions can contain large quantities of woody debris such as logs and tree stumps. Sediment-rich water floods with solid concentrations ranging from about 10 to 40% behave somewhat differently from debris flows and are known as hyperconcentrated floods.〔Pierson, Thomas C. (Distinguishing between debris flows and floods from field evidence in small watersheds ). US Department of the Interior, US Geological Survey, 2005.〕 Normal stream flows contain even lower concentrations of sediment.
Debris flows can be triggered by intense rainfall or snowmelt, by dam-break or glacial outburst floods, or by landsliding that may or may not be associated with intense rain. In all cases the chief conditions required for debris flow initiation include the presence of slopes steeper than about 25 degrees, the availability of abundant loose sediment, soil, or weathered rock, and sufficient water to bring this loose material to a state of almost complete saturation. Debris flows can be more frequent following forest and brush fires, as experience in southern California demonstrates. They pose a significant hazard in many steep, mountainous areas, and have received particular attention in Japan, China, Taiwan, USA, Canada, New Zealand, the Philippines, the European Alps, Russia, and Kazakhstan. In Japan a large debris flow or landslide is called ''yamatsunami'' (山津波), literally ''mountain tsunami''.
Debris flows are accelerated downhill by gravity and tend to follow steep mountain channels that debouche onto alluvial fans or floodplains. The front, or 'head' of a debris-flow surge often contains an abundance of coarse material such as boulders and logs that impart a great deal of friction. Trailing behind the high-friction flow head is a lower-friction, mostly liquefied flow body that contains a higher percentage of sand, silt and clay. These fine sediments help retain high pore-fluid pressures that enhance debris-flow mobility. In some cases the flow body is followed by a more watery tail that transitions into a hyperconcentrated stream flow. Debris flows tend to move in a series of pulses, or discrete surges, wherein each pulse or surge has a distinctive head, body and tail.
Debris-flow deposits are readily recognizable in the field. They make up significant percentages of many alluvial fans and debris cones along steep mountain fronts. Fully exposed deposits commonly have lobate forms with boulder-rich snouts, and the lateral margins of debris-flow deposits and paths are commonly marked by the presence of boulder-rich lateral levees. These natural levees form when relatively mobile, liquefied, fine-grained debris in the body of debris flows shoulders aside coarse, high-friction debris that collects in debris-flow heads as a consequence of grain-size segregation (a familiar phenomenon in granular mechanics). Lateral levees can confine the paths of ensuing debris flows, and the presence of older levees provides some idea of the magnitudes of previous debris flows in a particular area. Through dating of trees growing on such deposits, the approximate frequency of destructive debris flows can be estimated. This is important information for land development in areas where debris flows are common. Ancient debris-flow deposits that are exposed only in outcrops are more difficult to recognize, but are commonly typified by juxtaposition of grains with greatly differing shapes and sizes. This poor sorting of sediment grains distinguishes debris-flow deposits from most water-laid sediments.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Debris flow」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.